281 research outputs found

    Integration of spatial relationships and temporal relationships in humans

    Full text link

    The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

    Get PDF
    Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al

    Elevated expression of both mRNA and protein levels of IL-17A in sputum of stable Cystic Fibrosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>T helper 17 (Th17) cells can recruit neutrophils to inflammatory sites through production of IL-17, which induces chemokine release. IL-23 is an important inducer of IL-17 and IL-22 production. Our aim was to study the role of Th17 cells in cystic fibrosis (CF) lung disease by measuring IL-17 protein and mRNA levels and IL-22 and IL-23 mRNA in sputum of clinically stable CF patients and by comparing these levels with healthy controls.</p> <p>Methods</p> <p>Sputum induction was performed in adult CF patients outside of an exacerbation and healthy control subjects. IL-17A protein levels were measured in supernatants with cytometric bead array (CBA) and RNA was isolated and quantitative RT-PCR was performed for IL-17A, IL-22 and IL-23.</p> <p>Results</p> <p>We found significantly higher levels of IL-17A protein and mRNA levels (both: p < 0.0001) and IL-23 mRNA levels (p < 0.0001) in the sputum of CF group as compared to controls. We found very low levels of IL-22 mRNA in the CF group. The levels of IL-17 and IL-23 mRNA were higher in patients chronically infected with <it>Pseudomonas aeruginosa </it>(<it>P. aeruginosa</it>) as compared to those who were not chronically infected with <it>P. aeruginosa</it>. The presence of <it>Staphylococcus aureus </it>(<it>S. aureus</it>) on sputum did not affect the IL-17 or IL-23 levels. There was no correlation between IL-17 or IL-23 levels and FEV<sub>1 </sub>nor sputum neutrophilia.</p> <p>Conclusion</p> <p>The elevated levels of IL-17 and IL-23 might indicate that Th17 cells are implicated in the persistent neutrophil infiltration in CF lung disease and chronic infection with <it>P. aeruginosa</it>.</p

    Glioblastoma Therapy with Cytotoxic Mesenchymal Stromal Cells Optimized by Bioluminescence Imaging of Tumor and Therapeutic Cell Response

    Get PDF
    Genetically modified adipose tissue derived mesenchymal stromal cells (hAMSCs) with tumor homing capacity have been proposed for localized therapy of chemo- and radiotherapy resistant glioblastomas. We demonstrate an effective procedure to optimize glioblastoma therapy based on the use of genetically modified hAMSCs and in vivo non invasive monitoring of tumor and therapeutic cells. Glioblastoma U87 cells expressing Photinus pyralis luciferase (Pluc) were implanted in combination with hAMSCs expressing a trifunctional Renilla reniformis luciferase-red fluorescent protein-thymidine kinase reporter in the brains of SCID mice that were subsequently treated with ganciclovir (GCV). The resulting optimized therapy was effective and monitoring of tumor cells by bioluminescence imaging (BLI) showed that after 49 days GCV treatment reduced significantly the hAMSC treated tumors; by a factor of 104 relative to controls. Using a Pluc reporter regulated by an endothelial specific promoter and in vivo BLI to image hAMSC differentiation we gained insight on the therapeutic mechanism. Implanted hAMSCs homed to tumor vessels, where they differentiated to endothelial cells. We propose that the tumor killing efficiency of genetically modified hAMSCs results from their association with the tumor vascular system and should be useful vehicles to deliver localized therapy to glioblastoma surgical borders following tumor resection

    IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx?

    Get PDF
    BACKGROUND: The role of Th2 cells (producing interleukin (IL-)4, IL-5 and IL-13) in allergic asthma is well-defined. A distinct proinflammatory T cell lineage has recently been identified, called Th(17 )cells, producing IL-17A, a cytokine that induces CXCL8 (IL-8) and recruits neutrophils. Neutrophilic infiltration in the airways is prominent in severe asthma exacerbations and may contribute to airway gland hypersecretion, bronchial hyper-reactivity and airway wall remodelling in asthma. AIM: to study the production of IL-17 in asthmatic airways at the mRNA level, and to correlate this with IL-8 mRNA, neutrophilic inflammation and asthma severity. METHODS: We obtained airway cells by sputum induction from healthy individuals (n = 15) and from asthmatic patients (n = 39). Neutrophils were counted on cytospins and IL-17A and IL-8 mRNA expression was quantified by real-time RT-PCR (n = 11 controls and 33 asthmatics). RESULTS: Sputum IL-17A and IL-8 mRNA levels are significantly elevated in asthma patients compared to healthy controls. IL-17 mRNA levels are significantly correlated with CD3γ mRNA levels in asthmatic patients and mRNA levels of IL-17A and IL-8 correlated with each other and with sputum neutrophil counts. High sputum IL-8 and IL-17A mRNA levels were also found in moderate-to-severe (persistent) asthmatics on inhaled steroid treatment. CONCLUSION: The data suggest that Th(17 )cell infiltration in asthmatic airways links T cell activity with neutrophilic inflammation in asthma

    Combined pesticide exposure severely affects individual- and colony-level traits in bees

    Get PDF
    Reported widespread declines of wild and managed insect pollinators have serious consequences for global ecosystem services and agricultural production [1–3]. Bees contribute approximately 80% of insect pollination, so it is important to understand and mitigate the causes of current declines in bee populations [4–6]. Recent studies have implicated the role of pesticides in these declines, as exposure to these chemicals has been associated with changes in bee behaviour [7–11] and reductions in colony queen production [12]. However, the key link between changes in individual behaviour and the consequent impact at the colony level has not been shown. Social bee colonies depend on the collective performance of many individual workers. Thus, although field-level pesticide concentrations can have subtle or sublethal effects at the individual level [8], it is not known whether bee societies can buffer such effects or whether it results in a severe cumulative effect at the colony level. Furthermore, widespread agricultural intensification means that bees are exposed to numerous pesticides when foraging [13–15], yet the possible combinatorial effects of pesticide exposure have rarely been investigated [16,17]. Here we show that chronic exposure of bumblebees to two pesticides (neonicotinoid and pyrethroid) at concentrations that could approximate field-level exposure impairs natural foraging behaviour and increases worker mortality leading to significant reductions in brood development and colony success. We found that worker foraging performance, particularly pollen collecting efficiency, was significantly reduced with observed knock-on effects for forager recruitment, worker losses and overall worker productivity. Moreover, we provide evidence that combinatorial exposure to pesticides increases the propensity of colonies to fail

    Effect of incentives on insecticide-treated bed net use in sub-Saharan Africa: a cluster randomized trial in Madagascar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide-treated bed nets (ITNs) have been shown to reduce morbidity and mortality due to malaria in sub-Saharan Africa. Strategies using incentives to increase ITN use could be more efficient than traditional distribution campaigns. To date, behavioural incentives have been studied mostly in developed countries. No study has yet looked at the effect of incentives on the use of ITNs. Reported here are the results of a cluster randomized controlled trial testing household-level incentives for ITN use following a free ITN distribution campaign in Madagascar.</p> <p>Methods</p> <p>The study took place from July 2007 until February 2008. Twenty-one villages were randomized to either intervention or control clusters. Households in both clusters received a coupon redeemable for one ITN. After one month, intervention households received a bonus for ITN use, determined by visual confirmation of a mounted ITN. Data were collected at baseline, one month and six months. Both unadjusted and adjusted results, using cluster specific methods, are presented.</p> <p>Results</p> <p>At baseline, 8.5% of households owned an ITN and 6% were observed to have a net mounted over a bed in the household. At one month, there were no differences in ownership between the intervention and control groups (99.5% vs. 99.4%), but net use was substantially higher in the intervention group (99% vs. 78%), with an adjusted risk ratio of 1.24 (95% CI: 1.10 to 1.40; p < 0.001). After six months, net ownership had decreased in the intervention compared to the control group (96.7% vs. 99.7%), with an adjusted risk ratio of 0.97 (p < 0.01). There was no difference between the groups in terms of ITN use at six months; however, intervention households were more likely to use a net that they owned (96% vs. 90%; p < 0.001).</p> <p>Conclusions</p> <p>Household-level incentives have the potential to significantly increase the use of ITNs in target households in the immediate-term, but, over time, the use of ITNs is similar to households that did not receive incentives. Providing incentives for behaviour change is a promising tool that can complement traditional ITN distribution programmes and improve the effectiveness of ITN programmes in protecting vulnerable populations, especially in the short-term.</p
    corecore